CASSIA--a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine

© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 206(2015), 2 vom: 01. Apr., Seite 647-59
1. Verfasser: Schiestl-Aalto, Pauliina (VerfasserIn)
Weitere Verfasser: Kulmala, Liisa, Mäkinen, Harri, Nikinmaa, Eero, Mäkelä, Annikki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't carbon (C) balance dynamic modelling growth variation ontogenetic development phenology sink-source dynamics thermal time xylogenesis mehr... Carbon 7440-44-0
Beschreibung
Zusammenfassung:© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics
Beschreibung:Date Completed 04.01.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.13275