Comprehensive utilization of the pyrolysis products from sewage sludge
Bio-oils were produced from pyrolysis of sewage sludge in a horizontal tubular furnace under the anoxic or anaerobic conditions, by varying operating parameters and moisture content (MC) of the feedstock. Physicochemical properties of the obtained bio-oil (such as density, acid value, kinematical vi...
Veröffentlicht in: | Environmental technology. - 1998. - 36(2015), 13-16 vom: 03. Juli, Seite 1731-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't benefit analysis comprehensive utilization pyrolysis products sewage sludge upgrading Biofuels Sewage |
Zusammenfassung: | Bio-oils were produced from pyrolysis of sewage sludge in a horizontal tubular furnace under the anoxic or anaerobic conditions, by varying operating parameters and moisture content (MC) of the feedstock. Physicochemical properties of the obtained bio-oil (such as density, acid value, kinematical viscosity, high heating value and flash point) were analysed and compared with Chinese fuel standards. Tend, RT and β were found critical to control the yield and physico-chemical properties of bio-oil products. The relative importance of various parameters such as Tend, RT, β and MC was determined and the optimum values for the lowest kinematic viscosity and acid value and the highest yield of the bio-oil were achieved using the orthogonal matrix method. The parameters 550°C, 45 min, 5°C min(-1) and MC of 10% were found effective in producing the bio-oils with most of the desirable physico-chemical properties and yield. Benefit analysis was conducted to further optimize the operating parameters, considering pyrolysis treatment, comprehensive utilization of the pyrolysis products and final disposal of sewage sludge; the results showed the best economy of the pyrolysis parameters 450°C, 75 min, 3°C min(-1) and MC of 10%. The char obtained under this condition may serve as a microporous liquid adsorbent, while the bio-oil may serve as a low grade fuel oil after upgrading it with conventional fuel oil and deacidification. Pyrolysis products may become economically competitive in addition to being environment friendly |
---|---|
Beschreibung: | Date Completed 10.09.2015 Date Revised 01.04.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2015.1008584 |