Interactive segmentation and visualization of DTI data using a hierarchical watershed representation

Magnetic resonance diffusion tensor imaging (DTI) measures diffusion of water molecules and is used to characterize orientation of white matter fibers and connectivity of neurological structures. Segmentation and visualization of DT images is challenging, because of low data quality and complexity o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 3 vom: 18. März, Seite 1025-35
1. Verfasser: Jalba, Andrei C (VerfasserIn)
Weitere Verfasser: Westenberg, Michel A, Roerdink, Jos B T M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Magnetic resonance diffusion tensor imaging (DTI) measures diffusion of water molecules and is used to characterize orientation of white matter fibers and connectivity of neurological structures. Segmentation and visualization of DT images is challenging, because of low data quality and complexity of anatomical structures. In this paper, we propose an interactive segmentation approach, based on a hierarchical representation of the input DT image through a tree structure. The tree is obtained by successively merging watershed regions, based on the morphological waterfall approach, hence the name watershed tree. Region merging is done according to a combined similarity and homogeneity criterion. We introduce filters that work on the proposed tree representation, and that enable region-based attribute filtering of DTI data. Linked views between the visualizations of the simplified DT image and the tree enable a user to visually explore both data and tree at interactive rates. The coupling of filtering, semiautomatic segmentation by labeling nodes in the tree, and various interaction mechanisms support the segmentation task. Our method is robust against noise, which we demonstrate on synthetic and real DTI data
Beschreibung:Date Completed 30.03.2015
Date Revised 04.02.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2015.2390139