|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM245231331 |
003 |
DE-627 |
005 |
20231224140426.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.clim.2014.12.009
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0817.xml
|
035 |
|
|
|a (DE-627)NLM245231331
|
035 |
|
|
|a (NLM)25576660
|
035 |
|
|
|a (PII)S1521-6616(14)00287-3
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Xiaoyi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Automated flow cytometric analysis across large numbers of samples and cell types
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.06.2015
|
500 |
|
|
|a Date Revised 27.04.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2015. Published by Elsevier Inc.
|
520 |
|
|
|a Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Algorithms;
|
650 |
|
4 |
|a Automation;
|
650 |
|
4 |
|a Flow cytometry;
|
650 |
|
4 |
|a Multidimensional analysis;
|
650 |
|
4 |
|a Population-based cohort;
|
650 |
|
4 |
|a Standardization;
|
700 |
1 |
|
|a Hasan, Milena
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Libri, Valentina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Urrutia, Alejandra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Beitz, Benoît
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rouilly, Vincent
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duffy, Darragh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Patin, Étienne
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chalmond, Bernard
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rogge, Lars
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Quintana-Murci, Lluis
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Albert, Matthew L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schwikowski, Benno
|e verfasserin
|4 aut
|
700 |
0 |
|
|a Milieu Intérieur Consortium
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Clinical immunology (Orlando, Fla.)
|d 1999
|g 157(2015), 2 vom: 21. Apr., Seite 249-60
|w (DE-627)NLM098196855
|x 1521-7035
|7 nnns
|
773 |
1 |
8 |
|g volume:157
|g year:2015
|g number:2
|g day:21
|g month:04
|g pages:249-60
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.clim.2014.12.009
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 157
|j 2015
|e 2
|b 21
|c 04
|h 249-60
|