Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae

© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 66(2015), 2 vom: 07. Feb., Seite 579-92
1. Verfasser: Ahuja, Ishita (VerfasserIn)
Weitere Verfasser: van Dam, Nicole Marie, Winge, Per, Trælnes, Marianne, Heydarova, Aysel, Rohloff, Jens, Langaas, Mette, Bones, Atle Magnar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Brassica napus (oilseed rape) defence cells generalist glucosinolate jasmonates myrosinase plant–insect interaction transcriptional profiling. mehr... Cyclopentanes Glucosinolates Oxylipins jasmonic acid 6RI5N05OWW Tryptophan 8DUH1N11BX Glycoside Hydrolases EC 3.2.1.- thioglucosidase EC 3.2.1.147
LEADER 01000caa a22002652 4500
001 NLM245107770
003 DE-627
005 20240322234838.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/eru490  |2 doi 
028 5 2 |a pubmed24n1340.xml 
035 |a (DE-627)NLM245107770 
035 |a (NLM)25563968 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ahuja, Ishita  |e verfasserin  |4 aut 
245 1 0 |a Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.09.2015 
500 |a Date Revised 22.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. 
520 |a The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Brassica napus (oilseed rape) 
650 4 |a defence cells 
650 4 |a generalist 
650 4 |a glucosinolate 
650 4 |a jasmonates 
650 4 |a myrosinase 
650 4 |a plant–insect interaction 
650 4 |a transcriptional profiling. 
650 7 |a Cyclopentanes  |2 NLM 
650 7 |a Glucosinolates  |2 NLM 
650 7 |a Oxylipins  |2 NLM 
650 7 |a jasmonic acid  |2 NLM 
650 7 |a 6RI5N05OWW  |2 NLM 
650 7 |a Tryptophan  |2 NLM 
650 7 |a 8DUH1N11BX  |2 NLM 
650 7 |a Glycoside Hydrolases  |2 NLM 
650 7 |a EC 3.2.1.-  |2 NLM 
650 7 |a thioglucosidase  |2 NLM 
650 7 |a EC 3.2.1.147  |2 NLM 
700 1 |a van Dam, Nicole Marie  |e verfasserin  |4 aut 
700 1 |a Winge, Per  |e verfasserin  |4 aut 
700 1 |a Trælnes, Marianne  |e verfasserin  |4 aut 
700 1 |a Heydarova, Aysel  |e verfasserin  |4 aut 
700 1 |a Rohloff, Jens  |e verfasserin  |4 aut 
700 1 |a Langaas, Mette  |e verfasserin  |4 aut 
700 1 |a Bones, Atle Magnar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 66(2015), 2 vom: 07. Feb., Seite 579-92  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:66  |g year:2015  |g number:2  |g day:07  |g month:02  |g pages:579-92 
856 4 0 |u http://dx.doi.org/10.1093/jxb/eru490  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 66  |j 2015  |e 2  |b 07  |c 02  |h 579-92