Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations

We calculate potentials of mean force (PMFs) and mean first passage times for a surfactant to escape a micelle, for both ionic sodium dodecyl sulfate (SDS) and nonionic ethoxylated alcohol (C12E5) micelles using both atomistic and coarse-grained molecular dynamics (MD) simulations. The PMFs are obta...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 4 vom: 03. Feb., Seite 1336-43
1. Verfasser: Yuan, Fang (VerfasserIn)
Weitere Verfasser: Wang, Shihu, Larson, Ronald G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM245075461
003 DE-627
005 20231224140102.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1021/la5044393  |2 doi 
028 5 2 |a pubmed24n0817.xml 
035 |a (DE-627)NLM245075461 
035 |a (NLM)25560633 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Fang  |e verfasserin  |4 aut 
245 1 0 |a Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2015 
500 |a Date Revised 03.02.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We calculate potentials of mean force (PMFs) and mean first passage times for a surfactant to escape a micelle, for both ionic sodium dodecyl sulfate (SDS) and nonionic ethoxylated alcohol (C12E5) micelles using both atomistic and coarse-grained molecular dynamics (MD) simulations. The PMFs are obtained by umbrella sampling and used in a Smoluchowski first-passage-time theory to obtain the times for a surfactant to escape a micelle. The calculated mean first passage time for an SDS molecule to break away from a micelle (with an aggregation number of 60) is around 2 μs, which is consistent with previous experimental measurements of the "fast relaxation time" for exchange of surfactants between the micellar phase and the bulk solvent. The corresponding escape time calculated for a nonionic ethoxylated alcohol C12E5, with the same tail length as SDS, is 60 μs, which is significantly longer than for SDS primarily because the PMF for surfactant desorption is about 3kT smaller than for C12E5. We also show that two coarse-grained (CG) force fields, MARTINI and SDK, give predictions similar to the atomistic CHARMM force field for the nonionic C12E5 surfactant, but for the ionic SDS surfactant, the CG simulations give a PMF similar to that obtained with CHARMM only if long-range electrostatic interactions are included in the CG simulations, rather than using a shifted truncated electrostatic interaction. We also calculate that the mean first passage time for an SDS and a C12E5 to escape from a latex binder surface is of the order of milliseconds, which is more than 100 times longer than the time for escape from the micelle, indicating that in latex waterborne coatings, SDS and C12E5 surfactants likely bind preferentially to the latex polymer interface rather than form micelles, at least at low surfactant concentrations 
650 4 |a Journal Article 
700 1 |a Wang, Shihu  |e verfasserin  |4 aut 
700 1 |a Larson, Ronald G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 31(2015), 4 vom: 03. Feb., Seite 1336-43  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:31  |g year:2015  |g number:4  |g day:03  |g month:02  |g pages:1336-43 
856 4 0 |u http://dx.doi.org/10.1021/la5044393  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 31  |j 2015  |e 4  |b 03  |c 02  |h 1336-43