Fine-tuning regression forests votes for object alignment in the wild

In this paper, we propose a object alignment method that detects the landmarks of an object in 2D images. In the regression forests (RFs) framework, observations (patches) that are extracted at several image locations cast votes for the localization of several landmarks. We propose to refine the vot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 2 vom: 14. Feb., Seite 619-31
1. Verfasser: Yang, Heng (VerfasserIn)
Weitere Verfasser: Patras, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM244804567
003 DE-627
005 20231224135505.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2383325  |2 doi 
028 5 2 |a pubmed24n0816.xml 
035 |a (DE-627)NLM244804567 
035 |a (NLM)25532183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Heng  |e verfasserin  |4 aut 
245 1 0 |a Fine-tuning regression forests votes for object alignment in the wild 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 14.01.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a object alignment method that detects the landmarks of an object in 2D images. In the regression forests (RFs) framework, observations (patches) that are extracted at several image locations cast votes for the localization of several landmarks. We propose to refine the votes before accumulating them into the Hough space, by sieving and/or aggregating. In order to filter out false positive votes, we pass them through several sieves, each associated with a discrete or continuous latent variable. The sieves filter out votes that are not consistent with the latent variable in question, something that implicitly enforces global constraints. In order to aggregate the votes when necessary, we adjusts on-the-fly a proximity threshold by applying a classifier on middle-level features extracted from voting maps for the object landmark in question. Moreover, our method is able to predict the unreliability of an individual object landmark. This information can be useful for subsequent object analysis like object recognition. Our contributions are validated for two object alignment tasks, face alignment and car alignment, on data sets with challenging images collected in the wild, i.e., the Labeled Face in the Wild, the Annotated Facial Landmarks in the Wild, and the street scene car data set. We show that with the proposed approach, and without explicitly introducing shape models, we obtain performance superior or close to the state of the art for both tasks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 2 vom: 14. Feb., Seite 619-31  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:2  |g day:14  |g month:02  |g pages:619-31 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2383325  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 2  |b 14  |c 02  |h 619-31