An efficient DCT-based image compression system based on laplacian transparent composite model
Recently, a new probability model dubbed the Laplacian transparent composite model (LPTCM) was developed for DCT coefficients, which could identify outlier coefficients in addition to providing superior modeling accuracy. In this paper, we aim at exploring its applications to image compression. To t...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 3 vom: 14. März, Seite 886-900 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Recently, a new probability model dubbed the Laplacian transparent composite model (LPTCM) was developed for DCT coefficients, which could identify outlier coefficients in addition to providing superior modeling accuracy. In this paper, we aim at exploring its applications to image compression. To this end, we propose an efficient nonpredictive image compression system, where quantization (including both hard-decision quantization (HDQ) and soft-decision quantization (SDQ)) and entropy coding are completely redesigned based on the LPTCM. When tested over standard test images, the proposed system achieves overall coding results that are among the best and similar to those of H.264 or HEVC intra (predictive) coding, in terms of rate versus visual quality. On the other hand, in terms of rate versus objective quality, it significantly outperforms baseline JPEG by more than 4.3 dB in PSNR on average, with a moderate increase on complexity, and ECEB, the state-of-the-art nonpredictive image coding, by 0.75 dB when SDQ is OFF (i.e., HDQ case), with the same level of computational complexity, and by 1 dB when SDQ is ON, at the cost of slight increase in complexity. In comparison with H.264 intracoding, our system provides an overall 0.4-dB gain or so, with dramatically reduced computational complexity; in comparison with HEVC intracoding, it offers comparable coding performance in the high-rate region or for complicated images, but with only less than 5% of the HEVC intracoding complexity. In addition, our proposed system also offers multiresolution capability, which, together with its comparatively high coding efficiency and low complexity, makes it a good alternative for real-time image processing applications |
---|---|
Beschreibung: | Date Completed 30.03.2015 Date Revised 27.01.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2014.2383324 |