|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM244667381 |
003 |
DE-627 |
005 |
20231224135205.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la503932e
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0815.xml
|
035 |
|
|
|a (DE-627)NLM244667381
|
035 |
|
|
|a (NLM)25517626
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Ridley, Moira K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Experimental study of strontium adsorption on anatase nanoparticles as a function of size with a density functional theory and CD model interpretation
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.05.2015
|
500 |
|
|
|a Date Revised 20.01.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The effect of particle size on the adsorption of Sr(2+) onto monodisperse nanometer diameter (4, 20, and 40 nm) anatase samples has been evaluated quantitatively with macroscopic experimental studies. The adsorption of Sr(2+) onto the anatase particles was evaluated by potentiometric titrations in NaCl media, at two ionic strengths (0.03 and 0.3 m), and over a wide range of pH (3-11) and surface loadings, at a temperature of 25 °C. Adsorption of Sr(2+) to the surface of the 20 and 40 nm diameter samples was similar, whereas the Sr(2+) adsorption titration curves were shallower for the 4 nm diameter samples. At high pH, the smallest particles adsorbed slightly less Sr(2+) than was adsorbed by the larger particles. At the molecular scale, density functional theory (DFT) calculations were used to evaluate the most stable Sr(2+) surface species on the (101) anatase surface (the predominant crystal face). An inner-sphere Sr-tridentate surface species was found to be the most stable. The experimental data were described with a charge distribution (CD) and multisite complexation (MUSIC) model, with a Basic Stern layer description of the electric double layer. The resulting surface complexation model explicitly incorporated the molecular-scale information from the DFT simulation results. For 20 and 40 nm diameter anatase, the CD value for the Sr-tridentate species was calculated using a bond valence interpretation of the DFT-optimized geometry. The CD value for the 4 nm sample was smaller than that for the 20 and 40 nm samples, reflecting the shallower Sr(2+) adsorption titration curves. The adsorption differences between the smallest and larger anatase particles can be rationalized by water being more highly structured near the 4 nm anatase sample and/or the Sr-tridentate surface species may require more well-developed surface terraces than are present on the 4 nm particles
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Machesky, Michael L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kubicki, James D
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 31(2015), 2 vom: 20. Jan., Seite 703-13
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:2
|g day:20
|g month:01
|g pages:703-13
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la503932e
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 2
|b 20
|c 01
|h 703-13
|