Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 66(2015), 2 vom: 01. Feb., Seite 513-31
1. Verfasser: Harris, M O (VerfasserIn)
Weitere Verfasser: Friesen, T L, Xu, S S, Chen, M S, Giron, D, Stuart, J J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review Avirulence gene Resistance gene Susceptibility gene Triticeae. effector-triggered immunity effector-triggered susceptibility gene-for-gene interactions
Beschreibung
Zusammenfassung:© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
In this review, we argue for a research initiative on wheat's responses to biotic stress. One goal is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to a variety of agents of biotic stress are integrated in an important crop. We propose gene-for-gene interactions as the focus of the research initiative. On the parasite's side is an Avirulence (Avr) gene that encodes one of the many effector proteins the parasite applies to the plant to assist with colonization. On the plant's side is a Resistance (R) gene that mediates a surveillance system that detects the Avr protein directly or indirectly and triggers effector-triggered plant immunity. Even though arthropods are responsible for a significant proportion of plant biotic stress, they have not been integrated into important models of plant immunity that come from plant pathology. A roadblock has been the absence of molecular evidence for arthropod Avr effectors. Thirty years after this evidence was discovered in a plant pathogen, there is now evidence for arthropods with the cloning of the Hessian fly's vH13 Avr gene. After reviewing the two models of plant immunity, we discuss how arthropods could be incorporated. We end by showing features that make wheat an interesting system for plant immunity, including 479 resistance genes known from agriculture that target viruses, bacteria, fungi, nematodes, insects, and mites. It is not likely that humans will be subsisting on Arabidopsis in the year 2050. It is time to start understanding how agricultural plants integrate responses to biotic stress
Beschreibung:Date Completed 07.09.2015
Date Revised 08.01.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eru465