A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory

© 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 2 vom: 15. Jan., Seite 88-96
1. Verfasser: Sure, Rebecca (VerfasserIn)
Weitere Verfasser: Tonner, Ralf, Schwerdtfeger, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article density functional theory fullerenes rare gas encapsulation topological aspects
Beschreibung
Zusammenfassung:© 2014 Wiley Periodicals, Inc.
The most stable fullerene structures from C20 to C60 are chosen to study the energetics and geometrical consequences of encapsulating the rare gas elements He, Ne, or Ar inside the fullerene cage using dispersion corrected density functional theory. An exponential increase in stability is found with increasing number of carbon atoms. A similar exponential law is found for the volume expansion of the cage due to rare gas encapsulation with decreasing number of carbon atoms. We show that dispersion interactions become important with increasing size of the fullerene cage, where Van der Waals forces between the rare gas atom and the fullerene cage start to dominate over repulsive interactions. The smallest fullerenes where encapsulation of a rare gas element is energetically still favorable are HeC48, Ne@C52, and Ar@C58. While dispersion interactions follow the trend Ar > Ne > He inside C60 due to the trend in the rare gas dipole polarizabilities, repulsive forces become soon dominant with smaller cage size and we have a complete reversal for the energetics of rare gas encapsulation at C50
Beschreibung:Date Completed 09.07.2015
Date Revised 16.12.2014
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.23787