Assessing the performances of low impact development alternatives by long-term simulation for a semi-arid area in Tianjin, northern China

For areas that are urbanized rapidly, the practice of low impact development (LID) has gained an important place in stormwater management and urban planning due to its capability and beneficial effects in restoring the original hydrological cycle. The performances of LID alternatives can vary substa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 70(2014), 11 vom: 07., Seite 1740-5
1. Verfasser: Huang, Jinhui Jeanne (VerfasserIn)
Weitere Verfasser: Li, Yu, Niu, Shuai, Zhou, Shu H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:For areas that are urbanized rapidly, the practice of low impact development (LID) has gained an important place in stormwater management and urban planning due to its capability and beneficial effects in restoring the original hydrological cycle. The performances of LID alternatives can vary substantially due to different climate conditions. This study investigated the performances of five LID alternatives under a semi-arid climate in northern China on water balance and flood control. A numerical model, Storm Water Management Model version 5 (US Environmental Protection Agency), was employed to run 10 years' rainfall events for these objectives. Two evaluation methods were proposed in this study: the efficiency index for water balance and a performance radar chart. The investigation of the five LID alternatives revealed that these LID alternatives functioned differently in flood control and water balance, and porous pavement performed best in all indices except the lag time. The two evaluation methods, in conjunction with the long-term numerical simulation, can facilitate design and decision making by providing a clear picture of the performance and functions for these LID alternatives
Beschreibung:Date Completed 18.05.2015
Date Revised 02.12.2018
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2014.228