|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM244481288 |
003 |
DE-627 |
005 |
20231224134809.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la5038712
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0815.xml
|
035 |
|
|
|a (DE-627)NLM244481288
|
035 |
|
|
|a (NLM)25495665
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Thiruppathi, Eagappanath
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids
|b albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.03.2016
|
500 |
|
|
|a Date Revised 13.01.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Albumins
|2 NLM
|
650 |
|
7 |
|a Alloys
|2 NLM
|
650 |
|
7 |
|a Phosphoric Acids
|2 NLM
|
650 |
|
7 |
|a Chromium
|2 NLM
|
650 |
|
7 |
|a 0R0008Q3JB
|2 NLM
|
650 |
|
7 |
|a Cobalt
|2 NLM
|
650 |
|
7 |
|a 3G0H8C9362
|2 NLM
|
650 |
|
7 |
|a Fibrinogen
|2 NLM
|
650 |
|
7 |
|a 9001-32-5
|2 NLM
|
650 |
|
7 |
|a phosphoric acid
|2 NLM
|
650 |
|
7 |
|a E4GA8884NN
|2 NLM
|
650 |
|
7 |
|a Phosphonoacetic Acid
|2 NLM
|
650 |
|
7 |
|a N919E46723
|2 NLM
|
700 |
1 |
|
|a Larson, Mark K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mani, Gopinath
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 31(2015), 1 vom: 12., Seite 358-70
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:1
|g day:12
|g pages:358-70
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la5038712
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 1
|b 12
|h 358-70
|