Pareto-depth for multiple-query image retrieval
Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image se...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 2 vom: 08. Feb., Seite 583-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | Most content-based image retrieval systems consider either one single query, or multiple queries that include the same object or represent the same semantic information. In this paper, we consider the content-based image retrieval problem for multiple query images corresponding to different image semantics. We propose a novel multiple-query information retrieval algorithm that combines the Pareto front method with efficient manifold ranking. We show that our proposed algorithm outperforms state of the art multiple-query retrieval algorithms on real-world image databases. We attribute this performance improvement to concavity properties of the Pareto fronts, and prove a theoretical result that characterizes the asymptotic concavity of the fronts |
---|---|
Beschreibung: | Date Completed 30.03.2015 Date Revised 14.01.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2014.2378057 |