Random forest construction with robust semisupervised node splitting

Random forest (RF) is a very important classifier with applications in various machine learning tasks, but its promising performance heavily relies on the size of labeled training data. In this paper, we investigate constructing of RFs with a small size of labeled data and find that the performance...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 1 vom: 23. Jan., Seite 471-83
1. Verfasser: Liu, Xiao (VerfasserIn)
Weitere Verfasser: Song, Mingli, Tao, Dacheng, Liu, Zicheng, Zhang, Luming, Chen, Chun, Bu, Jiajun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't