Nonnegative Tensor Co-Factorization and Its Unified Solution

In this paper, we present a new joint factorization algorithm, called Nonnegative Tensor Co-Factorization (NTCoF). The key idea is to simultaneously factorize multiple visual features of the same data into nonnegative dimensionality-reduced representations, and meanwhile, to maximize the correlation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 9 vom: 01. Sept., Seite 3950-3961
1. Verfasser: Liu, Xiaobai (VerfasserIn)
Weitere Verfasser: Xu, Qian, Yan, Shuicheng, Wang, Gang, Jin, Hai, Lee, Seong-Whan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM24439492X
003 DE-627
005 20231224134616.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2327806  |2 doi 
028 5 2 |a pubmed24n0814.xml 
035 |a (DE-627)NLM24439492X 
035 |a (NLM)25486641 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
245 1 0 |a Nonnegative Tensor Co-Factorization and Its Unified Solution 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present a new joint factorization algorithm, called Nonnegative Tensor Co-Factorization (NTCoF). The key idea is to simultaneously factorize multiple visual features of the same data into nonnegative dimensionality-reduced representations, and meanwhile, to maximize the correlations of the low-dimensional representations. The data is generally encoded as tensors of arbitrary order, rather than vectors, to preserve the original data structures. NTCoF provides a simple and efficient way to fuse multiple complementary features for enhancing the discriminative power of the desired rank-reduced representations under the nonnegative constraints. We formulate the related objectives with a block-wise quadratic nonnegative function. To optimize, a unified convergence provable solution is developed. This solution is applicable for any nonnegative optimization problems with block-wise quadratic objective functions, and thus offer an unified platform based on which specific solution can be directly derived by skipping over tedious proof about algorithmic convergence. We apply the proposed algorithm and solution on three image tasks, face recognition, multi-class image categorization and multi-label image annotation. Results with comparisons on public challenging datasets show that the proposed algorithm can outperform both the traditional nonnegative methods and the popular feature combination methods 
650 4 |a Journal Article 
700 1 |a Xu, Qian  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Jin, Hai  |e verfasserin  |4 aut 
700 1 |a Lee, Seong-Whan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 9 vom: 01. Sept., Seite 3950-3961  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:9  |g day:01  |g month:09  |g pages:3950-3961 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2327806  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 9  |b 01  |c 09  |h 3950-3961