Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution
An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy....
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 51 vom: 30. Dez., Seite 15477-85 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Oligopeptides Solutions gallium nitride 1R9CC3P9VL Gallium CH46OC8YV4 |
Zusammenfassung: | An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species |
---|---|
Beschreibung: | Date Completed 04.09.2015 Date Revised 25.11.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la5040245 |