Attachment of ribonucleotides on α-alumina as a function of pH, ionic strength, and surface loading
The interactions between nucleic acids and mineral surfaces have been the focus of many studies in environmental sciences, in biomedicine, as well as in origin of life studies for the prebiotic formation of biopolymers. However, few studies have focused on a wide range of environmental conditions an...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 1 vom: 08., Seite 240-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, U.S. Gov't, Non-P.H.S. Ribonucleotides Aluminum Oxide LMI26O6933 |
Zusammenfassung: | The interactions between nucleic acids and mineral surfaces have been the focus of many studies in environmental sciences, in biomedicine, as well as in origin of life studies for the prebiotic formation of biopolymers. However, few studies have focused on a wide range of environmental conditions and the likely modes of attachment. Here we investigated the adsorption of ribonucleotides onto α-alumina surfaces over a wide range of pH, ionic strength, and ligand-to-solid ratio, by both an experimental and a theoretical approach. The adsorption of ribonucleotides is strongly affected by pH, with a maximum adsorption at pH values around 5. Alumina adsorbs high amounts of nucleotides >2 μmol/m(2). We used the extended triple-layer model (ETLM) to predict the speciation of the surface complexes formed as well as the stoichiometry and equilibrium constants. We propose the formation of two surface species: a monodentate inner-sphere complex, dominant at pH <7, and a bidentate outer-sphere complex, dominant at higher pH. Both complexes would involve interactions between the negatively charged phosphate group and the positively charged surface of alumina. Our results provide a better understanding of how nucleic acids attach to mineral surfaces under varying environmental conditions. Moreover, the predicted configuration of nucleotide surface species, bound via the phosphate group, could have implications for the abiotic formation of nucleic acids in the context of the origin of life |
---|---|
Beschreibung: | Date Completed 10.03.2016 Date Revised 13.01.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la504034k |