Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

Copyright © 2014 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 35(2015) vom: 16. Jan., Seite 135-40
1. Verfasser: Harris, Eliza (VerfasserIn)
Weitere Verfasser: Zeyer, Kerstin, Kegel, Rainer, Müller, Beat, Emmenegger, Lukas, Mohn, Joachim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Emission factor Greenhouse gas Isotopic composition Nitrous oxide Waste incineration deNO(x) technology Nitrogen Isotopes Solid Waste mehr... Nitrous Oxide K50XQU1029 Methane OP0UW79H66
Beschreibung
Zusammenfassung:Copyright © 2014 Elsevier Ltd. All rights reserved.
Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010-August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3 ± 4.0g N2O tonne(-1) waste (wet) (hereafter abbreviated as t(-1)) (0.4 ± 0.4 g N2O GJ(-1)), ten times lower than from plants with selective non-catalytic reduction (51.5 ± 10.6g N2O t(-1); 4.5 ± 0.9g N2O GJ(-1)). These emission factors, which are much lower than the value of 120g N2O t(-1) (10.4g N2O GJ(-1)) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of (14)N(15)NO relative to (15)N(14)NO - was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17-19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6g CH4 t(-1) (0.2 ± 0.5g CH4 GJ(-1)), which is expected due to high incinerator temperatures and efficient combustion
Beschreibung:Date Completed 31.08.2015
Date Revised 08.12.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1879-2456
DOI:10.1016/j.wasman.2014.10.016