Effects of increased temperatures on Gammarus fossarum under the influence of copper sulphate
The specialised fauna of freshwater springs will have to cope with a possible temperature rise owing to Global Change. It is affected additionally by contamination of the water with xenobiotics from human activities in the surrounding landscape. We assessed the combined effects of temperature increa...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 24(2015), 2 vom: 26. März, Seite 433-44 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Water Pollutants, Chemical Copper 789U1901C5 |
Zusammenfassung: | The specialised fauna of freshwater springs will have to cope with a possible temperature rise owing to Global Change. It is affected additionally by contamination of the water with xenobiotics from human activities in the surrounding landscape. We assessed the combined effects of temperature increase and exposure to toxins in laboratory experiments by using copper sulphate as a model substance and Gammarus fossarum Koch, 1835, as the model organism. This amphipod is a common representative of the European spring fauna and copper ions are widespread contaminants, mainly from agricultural practice. The experiments were conducted in boxes placed in flow channels and the water temperatures were varied. The gammarids were fed with conditioned beech leaf discs. The feeding activity of the amphipods was quantified on the level of the organism; and the respiratory electron transport system (ETS) assay was conducted in order to determine changes on the cellular level in the test organisms. The results show that the feeding activity increased slightly with higher water temperature. The sub-lethal copper dose had no significant effect other than a trend towards lower feeding activity. The ETS activity was significantly higher at the higher water temperatures, and the copper ions significantly lowered the ETS activity of the organisms. The combination of the two methods was useful when testing for combined effects of environmental changes and pollutants on a species. From the results one can reasonably infer a higher risk of adverse effects with increase in water temperature and exposure to a particular heavy metal |
---|---|
Beschreibung: | Date Completed 19.10.2015 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-014-1392-6 |