3D object retrieval with multitopic model combining relevance feedback and LDA model

View-based 3D model retrieval uses a set of views to represent each object. Discovering the complex relationship between multiple views remains challenging in 3D object retrieval. Recent progress in the latent Dirichlet allocation (LDA) model leads us to propose its use for 3D object retrieval. This...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 1 vom: 23. Jan., Seite 94-105
1. Verfasser: Leng, Biao (VerfasserIn)
Weitere Verfasser: Zeng, Jiabei, Yao, Ming, Xiong, Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:View-based 3D model retrieval uses a set of views to represent each object. Discovering the complex relationship between multiple views remains challenging in 3D object retrieval. Recent progress in the latent Dirichlet allocation (LDA) model leads us to propose its use for 3D object retrieval. This LDA approach explores the hidden relationships between extracted primordial features of these views. Since LDA is limited to a fixed number of topics, we further propose a multitopic model to improve retrieval performance. We take advantage of a relevance feedback mechanism to balance the contributions of multiple topic models with specified numbers of topics. We demonstrate our improved retrieval performance over the state-of-the-art approaches
Beschreibung:Date Completed 30.03.2015
Date Revised 20.02.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2014.2372618