Self-assembly behavior of alkylated isophthalic acids revisited : concentration in control and guest-induced phase transformation

The engineering of two-dimensional crystals by physisorption-based molecular self-assembly at the liquid-solid interface is a powerful method to functionalize and nanostructure surfaces. The formation of high-symmetry networks from low-symmetry building blocks is a particularly important target. Alk...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 50 vom: 23. Dez., Seite 15206-11
1. Verfasser: Park, Kwang-Won (VerfasserIn)
Weitere Verfasser: Adisoejoso, Jinne, Plas, Jan, Hong, Jongin, Müllen, Klaus, De Feyter, Steven
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The engineering of two-dimensional crystals by physisorption-based molecular self-assembly at the liquid-solid interface is a powerful method to functionalize and nanostructure surfaces. The formation of high-symmetry networks from low-symmetry building blocks is a particularly important target. Alkylated isophthalic acid (ISA) derivatives are early test systems, and it was demonstrated that to produce a so-called porous hexagonal packing of plane group p6, i.e., a regular array of nanowells, either short alkyl chains or the introduction of bulky groups within the chains were mandatory. After all, the van der Waals interactions between adjacent alkyl chains or alkyl chains and the surface would dominate the ideal hydrogen bonding between the carboxyl groups, and therefore, a close-packed lamella structure (plane group p2) was uniquely observed. In this contribution, we show two versatile approaches to circumvent this problem, which are based on well-known principles: the "concentration in control" and the "guest-induced transformation" methods. The successful application of these methods makes ISA suitable building blocks to engineer a porous pattern, in which the distance between the pores can be tuned with nanometer precision
Beschreibung:Date Completed 19.05.2015
Date Revised 23.12.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la5040849