LSRN : A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS

We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to min x∈ℝ n ‖Ax - b‖2, where A ∈ ℝ m × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics. - 1999. - 36(2014), 2 vom: 01., Seite C95-C118
1. Verfasser: Meng, Xiangrui (VerfasserIn)
Weitere Verfasser: Saunders, Michael A, Mahoney, Michael W
Format: Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics
Schlagworte:Journal Article Chebyshev semi-iterative method LAPACK LSQR Tikhonov regularization iterative method linear least squares minimum-length solution over determined system parallel computing mehr... preconditioning random matrix random projection random sampling randomized algorithm rank-deficient ridge regression sparse matrix underdetermined system