Effects of stomatal density and leaf water content on the ¹⁸O enrichment of leaf water

© 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 206(2015), 1 vom: 18. Apr., Seite 141-151
1. Verfasser: Larcher, Leticia (VerfasserIn)
Weitere Verfasser: Hara-Nishimura, Ikuko, Sternberg, Leonel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Arabidopsis leaf water leaf water content oxygen isotope ratios stomatal density Oxygen Isotopes Water 059QF0KO0R mehr... Oxygen S88TT14065
Beschreibung
Zusammenfassung:© 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
Leaf water isotopic composition is imprinted in several biomarkers of interest and it is imperative that we understand the isotopic enrichment of leaf water. Here, we test the effect of stomatal density and leaf water content on the oxygen isotopic composition of leaf water in transgenic Arabidopsis plants expressing different stomatal densities, and several other species showing a range of stomatal density. We grew Arabidopsis plants hydroponically and collected other species in the field. Stomatal density and leaf water content were determined for each plant. We measured transpiration and extracted leaf water for isotopic determination. Using these measurements and the current leaf water isotope model, we calculated several of the parameters related to leaf water isotopic enrichment. High stomatal density promoted leaf water isotope enrichment. No conclusion, however, can be drawn regarding the effect of leaf water content on leaf water isotope enrichment. Factors such as transpiration might mask the effect of stomatal density on leaf water isotopic enrichment. We propose a method by which stomatal density can be incorporated in the current Peclet model of leaf water isotope enrichment. These findings have important applications in the use of plant-based metabolic proxies in paleoclimate studies
Beschreibung:Date Completed 11.02.2016
Date Revised 09.11.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.13154