Stability of alumina, ceria, and silica nanoparticles in municipal wastewater

Inorganic oxide nanoparticles (NPs) are used in semiconductor manufacturing operations such as wafer chemical-mechanical planarization (CMP). Understanding the stability of NPs in municipal wastewater is essential for the evaluation of the fate of NPs released to municipal wastewater treatment plant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 70(2014), 9 vom: 19., Seite 1533-9
1. Verfasser: Otero-González, Lila (VerfasserIn)
Weitere Verfasser: Barbero, Isabel, Field, Jim A, Shadman, Farhang, Sierra-Alvarez, Reyes
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Waste Water Cerium 30K4522N6T ceric oxide 619G5K328Y Silicon Dioxide 7631-86-9 Aluminum Oxide LMI26O6933
Beschreibung
Zusammenfassung:Inorganic oxide nanoparticles (NPs) are used in semiconductor manufacturing operations such as wafer chemical-mechanical planarization (CMP). Understanding the stability of NPs in municipal wastewater is essential for the evaluation of the fate of NPs released to municipal wastewater treatment plants (WWTPs). This study aimed to evaluate the stability of Al(2)O(3), CeO(2), and SiO(2) NPs and CMP waste effluents containing these NPs in municipal wastewater. Al(2)O(3) and CeO(2) NPs were destabilized by wastewater constituents, as indicated by the formation of large agglomerates. However, the same NPs in the CMP waste slurries showed high stability in wastewater, probably due to additives present in the slurry that modify the surface chemistry of the particles. Likewise, both the commercial SiO(2) NPs and the CMP waste slurry containing SiO(2) NPs showed substantial stability in wastewater since this NP has a very low point of zero charge, which suggests that this NP could be the hardest one to remove in conventional WWTPs by aggregation-sedimentation. In summary, the results indicate that wastewater may destabilize NPs suspensions, which would facilitate NP removal in WWTPs. However, some chemicals present in real CMP slurries may counterbalance this effect. More research is needed to completely understand the surface chemistry involved
Beschreibung:Date Completed 08.05.2015
Date Revised 07.12.2022
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2014.408