Learning templates for artistic portrait lighting analysis

Lighting is a key factor in creating impressive artistic portraits. In this paper, we propose to analyze portrait lighting by learning templates of lighting styles. Inspired by the experience of artists, we first define several novel features that describe the local contrasts in various face regions...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 2 vom: 10. Feb., Seite 608-18
Auteur principal: Chen, Xiaowu (Auteur)
Autres auteurs: Jin, Xin, Wu, Hongyu, Zhao, Qinping
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM24354863X
003 DE-627
005 20250217180138.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2369962  |2 doi 
028 5 2 |a pubmed25n0811.xml 
035 |a (DE-627)NLM24354863X 
035 |a (NLM)25398179 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xiaowu  |e verfasserin  |4 aut 
245 1 0 |a Learning templates for artistic portrait lighting analysis 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.10.2015 
500 |a Date Revised 14.01.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Lighting is a key factor in creating impressive artistic portraits. In this paper, we propose to analyze portrait lighting by learning templates of lighting styles. Inspired by the experience of artists, we first define several novel features that describe the local contrasts in various face regions. The most informative features are then selected with a stepwise feature pursuit algorithm to derive the templates of various lighting styles. After that, the matching scores that measure the similarity between a testing portrait and those templates are calculated for lighting style classification. Furthermore, we train a regression model by the subjective scores and the feature responses of a template to predict the score of a portrait lighting quality. Based on the templates, a novel face illumination descriptor is defined to measure the difference between two portrait lightings. Experimental results show that the learned templates can well describe the lighting styles, whereas the proposed approach can assess the lighting quality of artistic portraits as human being does 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jin, Xin  |e verfasserin  |4 aut 
700 1 |a Wu, Hongyu  |e verfasserin  |4 aut 
700 1 |a Zhao, Qinping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 2 vom: 10. Feb., Seite 608-18  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:24  |g year:2015  |g number:2  |g day:10  |g month:02  |g pages:608-18 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2369962  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 2  |b 10  |c 02  |h 608-18