Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units
© 2014 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 36(2015), 3 vom: 30. Jan., Seite 164-70 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article |
Zusammenfassung: | © 2014 Wiley Periodicals, Inc. Graphical processing units (GPUs) are emerging in computational chemistry to include Hartree-Fock (HF) methods and electron-correlation theories. However, ab initio calculations of large molecules face technical difficulties such as slow memory access between central processing unit and GPU and other shortfalls of GPU memory. The divide-and-conquer (DC) method, which is a linear-scaling scheme that divides a total system into several fragments, could avoid these bottlenecks by separately solving local equations in individual fragments. In addition, the resolution-of-the-identity (RI) approximation enables an effective reduction in computational cost with respect to the GPU memory. The present study implemented the DC-RI-HF code on GPUs using math libraries, which guarantee compatibility with future development of the GPU architecture. Numerical applications confirmed that the present code using GPUs significantly accelerated the HF calculations while maintaining accuracy |
---|---|
Beschreibung: | Date Completed 21.05.2015 Date Revised 30.12.2014 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.23782 |