Circuit optomechanics : concepts and materials

Nanophotonic integrated circuits offer unique advantages for studying the interaction of light fields with mechanical structures. Because nanoscale waveguides are closely size-matched to nanomechanical devices, strong optomechanical interactions arise which can be harnessed in optical systems. The a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 61(2014), 11 vom: 11. Nov., Seite 1889-98
1. Verfasser: Pernice, Wolfram H P (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM243469640
003 DE-627
005 20250217174345.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2013.006251  |2 doi 
028 5 2 |a pubmed25n0811.xml 
035 |a (DE-627)NLM243469640 
035 |a (NLM)25389167 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pernice, Wolfram H P  |e verfasserin  |4 aut 
245 1 0 |a Circuit optomechanics  |b concepts and materials 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2015 
500 |a Date Revised 12.11.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nanophotonic integrated circuits offer unique advantages for studying the interaction of light fields with mechanical structures. Because nanoscale waveguides are closely size-matched to nanomechanical devices, strong optomechanical interactions arise which can be harnessed in optical systems. The additional mechanical degrees of freedom provided by optomechanical devices are of particular interest for material systems in which tunability of the optical properties is not readily available. Here, suitable materials for the realization of chip-based optomechanical circuits are discussed and analyzed in terms of performance and the achievable quality factors. In particular, materials that offer large electronic band gaps are of interest, because in this case broadband optical transparency is achieved, combined with reduced free carrier effects. Several device geometries that can be used for enhancing optical forces are presented which address both an increase in the field gradient and the net optical force through resonant enhancement. Combining a variety of optomechanical components into full circuits thus provides a new route toward functional nanophotonic circuits with applications in sensing and optical signal processing in a chip-scale framework 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 61(2014), 11 vom: 11. Nov., Seite 1889-98  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:61  |g year:2014  |g number:11  |g day:11  |g month:11  |g pages:1889-98 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2013.006251  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2014  |e 11  |b 11  |c 11  |h 1889-98