|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM243436645 |
003 |
DE-627 |
005 |
20231224132528.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.12754
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0811.xml
|
035 |
|
|
|a (DE-627)NLM243436645
|
035 |
|
|
|a (NLM)25385668
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Altieri, Andrew H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Climate change and dead zones
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.11.2015
|
500 |
|
|
|a Date Revised 11.03.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2014 John Wiley & Sons Ltd.
|
520 |
|
|
|a Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a dissolved oxygen
|
650 |
|
4 |
|a ecosystem function
|
650 |
|
4 |
|a estuaries
|
650 |
|
4 |
|a eutrophication
|
650 |
|
4 |
|a hypoxia
|
650 |
|
4 |
|a ocean acidification
|
650 |
|
4 |
|a sea-level rise
|
650 |
|
4 |
|a temperature
|
700 |
1 |
|
|a Gedan, Keryn B
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 21(2015), 4 vom: 21. Apr., Seite 1395-406
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2015
|g number:4
|g day:21
|g month:04
|g pages:1395-406
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.12754
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2015
|e 4
|b 21
|c 04
|h 1395-406
|