Electron tunneling pathways in respiratory complex I. The role of the internal water between the enzyme subunits

Recently, the atomistic details of the electronic wiring of seven Fe/S clusters (N3, N1b, N4, N5, N6a, N6b, N2) of respiratory complex I, along which electrons are injected into the electron transport chain, have been revealed; the tunneling pathways between the clusters and the contributing key res...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland). - 1999. - 660(2011), 2 vom: 15. Sept., Seite 356-359
1. Verfasser: Hayashi, Tomoyuki (VerfasserIn)
Weitere Verfasser: Stuchebrukhov, Alexei
Format: Aufsatz
Sprache:English
Veröffentlicht: 2011
Zugriff auf das übergeordnete Werk:Journal of electroanalytical chemistry (Lausanne, Switzerland)
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM243412452
003 DE-627
005 20241006231815.0
007 tu
008 231224s2011 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1559.xml 
035 |a (DE-627)NLM243412452 
035 |a (NLM)25383069 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hayashi, Tomoyuki  |e verfasserin  |4 aut 
245 1 0 |a Electron tunneling pathways in respiratory complex I. The role of the internal water between the enzyme subunits 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 06.10.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, the atomistic details of the electronic wiring of seven Fe/S clusters (N3, N1b, N4, N5, N6a, N6b, N2) of respiratory complex I, along which electrons are injected into the electron transport chain, have been revealed; the tunneling pathways between the clusters and the contributing key residues were identified [1]. In this study, the sensitivity of the electron tunneling pathways to the internal water at the protein subunit boundaries is investigated by simulating tunneling pathways of N3→N1b and N6b→N2 with and without the internal water. It is found that the hydrogen bonding networks formed along the internal water can provide efficient tunneling pathways. In N3→N1b, the tunneling pathway with the internal water is drastically different with significantly shorter (3.4 Å) total tunneling distance along the trajectory. In N6b→N2, the internal water contributes to the tunneling as a bridge between N6b and 9Ile99 with two shorter through-space jumps instead of one longer jump. The resulting enhancement of the rates of the individual electron tunneling process is two to three orders of magnitude. This study demonstrates that the tunneling pathways and tunneling rates are sensitive to the internal water, which suggests that the tunneling pathways can change dynamically due to the diffusion of the internal water, and that the efficient electron tunneling occurs at some specific optimal positions of the internal water 
650 4 |a Journal Article 
700 1 |a Stuchebrukhov, Alexei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of electroanalytical chemistry (Lausanne, Switzerland)  |d 1999  |g 660(2011), 2 vom: 15. Sept., Seite 356-359  |w (DE-627)NLM098241281  |x 1572-6657  |7 nnns 
773 1 8 |g volume:660  |g year:2011  |g number:2  |g day:15  |g month:09  |g pages:356-359 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 660  |j 2011  |e 2  |b 15  |c 09  |h 356-359