LEADER 01000caa a22002652 4500
001 NLM243403100
003 DE-627
005 20250217172842.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.12409  |2 doi 
028 5 2 |a pubmed25n0811.xml 
035 |a (DE-627)NLM243403100 
035 |a (NLM)25382071 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lechner, A M  |e verfasserin  |4 aut 
245 1 0 |a Characterizing spatial uncertainty when integrating social data in conservation planning 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.07.2015 
500 |a Date Revised 02.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 Society for Conservation Biology. 
520 |a Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 4 |a Systematic Review 
650 4 |a SIG de participación pública 
650 4 |a calidad de datos espaciales 
650 4 |a conservation opportunity 
650 4 |a conservation planning 
650 4 |a elicited values 
650 4 |a evaluación de la conservación sistemática 
650 4 |a incertidumbre espacial 
650 4 |a investigación social 
650 4 |a oportunidad de conservación 
650 4 |a planeación de la conservación 
650 4 |a public participation GIS 
650 4 |a social research 
650 4 |a spatial data quality 
650 4 |a spatial uncertainty 
650 4 |a systematic conservation assessment 
650 4 |a valores obtenidos 
700 1 |a Raymond, C M  |e verfasserin  |4 aut 
700 1 |a Adams, V M  |e verfasserin  |4 aut 
700 1 |a Polyakov, M  |e verfasserin  |4 aut 
700 1 |a Gordon, A  |e verfasserin  |4 aut 
700 1 |a Rhodes, J R  |e verfasserin  |4 aut 
700 1 |a Mills, M  |e verfasserin  |4 aut 
700 1 |a Stein, A  |e verfasserin  |4 aut 
700 1 |a Ives, C D  |e verfasserin  |4 aut 
700 1 |a Lefroy, E C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1989  |g 28(2014), 6 vom: 10. Dez., Seite 1497-511  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:28  |g year:2014  |g number:6  |g day:10  |g month:12  |g pages:1497-511 
856 4 0 |u http://dx.doi.org/10.1111/cobi.12409  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2014  |e 6  |b 10  |c 12  |h 1497-511