Symmetric subspace learning for image analysis

Subspace learning (SL) is one of the most useful tools for image analysis and recognition. A large number of such techniques have been proposed utilizing a priori knowledge about the data. In this paper, new subspace learning techniques are presented that use symmetry constraints in their objective...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 21. Dez., Seite 5683-97
1. Verfasser: Papachristou, Konstantinos (VerfasserIn)
Weitere Verfasser: Tefas, Anastasios, Pitas, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Subspace learning (SL) is one of the most useful tools for image analysis and recognition. A large number of such techniques have been proposed utilizing a priori knowledge about the data. In this paper, new subspace learning techniques are presented that use symmetry constraints in their objective functions. The rational behind this idea is to exploit the a priori knowledge that geometrical symmetry appears in several types of data, such as images, objects, faces, and so on. Experiments on artificial, facial expression recognition, face recognition, and object categorization databases highlight the superiority and the robustness of the proposed techniques, in comparison with standard SL techniques
Beschreibung:Date Completed 23.10.2015
Date Revised 02.02.2015
published: Print
Citation Status MEDLINE
ISSN:1941-0042