Ormocomp-modified glass increases collagen binding and promotes the adherence and maturation of human embryonic stem cell-derived retinal pigment epithelial cells
In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilan...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 48 vom: 09. Dez., Seite 14555-65 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Propylamines Silanes amino-propyl-triethoxysilane L8S6UBW552 |
Zusammenfassung: | In in vitro live-cell imaging, it would be beneficial to grow and assess human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells on thin, transparent, rigid surfaces such as cover glasses. In this study, we assessed how the silanization of glass with 3-aminopropyltriethoxysilane (APTES), 3-(trimethoxysilyl)propyl methacrylate (MAPTMS), or polymer-ceramic material Ormocomp affects the surface properties, protein binding, and maturation of hESC-RPE cells. The surface properties were studied by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and a protein binding assay. The cell adherence and proliferation were evaluated by culturing hESCRPE cells on collagen IV-coated untreated or silanized surfaces for 42 days. The Ormocomp treatment significantly increased the hydrophobicity and roughness of glass surfaces compared to the APTES and MAPTMS treatments. The XPS results indicated that the Ormocomp treatment changes the chemical composition of the glass surface by increasing the carbon content and the number of C-O/═O bonds. The protein-binding test confirmed that the Ormocomp-treated surfaces bound more collagen IV than did APTES- or MAPTMS-treated surfaces. All of the silane treatments increased the number of cells: after 42 days of culture, Ormocomp had 0.38, APTES had 0.16, MAPTMS had 0.19, and untreated glass had only 0.062, all presented as million cells cm(-2). There were no differences in cell numbers compared to smoother to rougher Ormocomp surfaces, suggesting that the surface chemistry and, more specifically, the collagen binding in combination with Ormocomp are beneficial to hESC-RPE cell culture. This study clearly demonstrates that Ormocomp treatment combined with collagen coating significantly increases hESC-RPE cell attachment compared to commonly used silanizing agents APTES and MAPTMS. Ormocomp silanization could thus enable the use of microscopic live cell imaging methods for hESC-RPE cells |
---|---|
Beschreibung: | Date Completed 26.10.2015 Date Revised 25.11.2016 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la5023642 |