Tree-based Morse regions : a topological approach to local feature detection

This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial interest points. Critical points are selected from what we call a tree-b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 04. Dez., Seite 5612-25
1. Verfasser: Xu, Yongchao (VerfasserIn)
Weitere Verfasser: Monasse, Pascal, Géraud, Thierry, Najman, Laurent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM243316690
003 DE-627
005 20231224132255.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0811.xml 
035 |a (DE-627)NLM243316690 
035 |a (NLM)25373079 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yongchao  |e verfasserin  |4 aut 
245 1 0 |a Tree-based Morse regions  |b a topological approach to local feature detection 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 02.02.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper introduces a topological approach to local invariant feature detection motivated by Morse theory. We use the critical points of the graph of the intensity image, revealing directly the topology information as initial interest points. Critical points are selected from what we call a tree-based shape-space. In particular, they are selected from both the connected components of the upper level sets of the image (the Max-tree) and those of the lower level sets (the Min-tree). They correspond to specific nodes on those two trees: 1) to the leaves (extrema) and 2) to the nodes having bifurcation (saddle points). We then associate to each critical point the largest region that contains it and is topologically equivalent in its tree. We call such largest regions the tree-based Morse regions (TBMRs). The TBMR can be seen as a variant of maximally stable extremal region (MSER), which are contrasted regions. Contrarily to MSER, TBMR relies only on topological information and thus fully inherit the invariance properties of the space of shapes (e.g., invariance to affine contrast changes and covariance to continuous transformations). In particular, TBMR extracts the regions independently of the contrast, which makes it truly contrast invariant. Furthermore, it is quasi-parameter free. TBMR extraction is fast, having the same complexity as MSER. Experimentally, TBMR achieves a repeatability on par with state-of-the-art methods, but obtains a significantly higher number of features. Both the accuracy and robustness of TBMR are demonstrated by applications to image registration and 3D reconstruction 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Monasse, Pascal  |e verfasserin  |4 aut 
700 1 |a Géraud, Thierry  |e verfasserin  |4 aut 
700 1 |a Najman, Laurent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 04. Dez., Seite 5612-25  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:04  |g month:12  |g pages:5612-25 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 04  |c 12  |h 5612-25