Colloidal stability of citrate and mercaptoacetic acid capped gold nanoparticles upon lyophilization : effect of capping ligand attachment and type of cryoprotectants

For various applications of gold nanotechnology, long-term nanoparticle stability in solution is a major challenge. Lyophilization (freeze-drying) is a widely used process to convert labile protein and various colloidal systems into powder for improved long-term stability. However, the lyophilizatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 46 vom: 25. Nov., Seite 13799-808
1. Verfasser: Alkilany, Alaaldin M (VerfasserIn)
Weitere Verfasser: Abulateefeh, Samer R, Mills, Kayla K, Yaseen, Alaa I Bani, Hamaly, Majd A, Alkhatib, Hatim S, Aiedeh, Khaled M, Stone, John W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Colloids Cryoprotective Agents Thioglycolates Citric Acid 2968PHW8QP Gold 7440-57-5 2-mercaptoacetate 7857H94KHM
LEADER 01000naa a22002652 4500
001 NLM243165854
003 DE-627
005 20231224131940.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1021/la504000v  |2 doi 
028 5 2 |a pubmed24n0810.xml 
035 |a (DE-627)NLM243165854 
035 |a (NLM)25356538 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alkilany, Alaaldin M  |e verfasserin  |4 aut 
245 1 0 |a Colloidal stability of citrate and mercaptoacetic acid capped gold nanoparticles upon lyophilization  |b effect of capping ligand attachment and type of cryoprotectants 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.10.2015 
500 |a Date Revised 18.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a For various applications of gold nanotechnology, long-term nanoparticle stability in solution is a major challenge. Lyophilization (freeze-drying) is a widely used process to convert labile protein and various colloidal systems into powder for improved long-term stability. However, the lyophilization process itself may induce various stresses resulting in nanoparticle aggregation. Despite a plethora of studies evaluating lyophilization of proteins, liposomes, and polymeric nanoparticles, little is known about the stability of gold nanoparticles (GNPs) upon lyophilization. Herein, the effects of lyophilization and freeze-thaw cycles on the stability of two types of GNPs: Citrate-capped GNPs (stabilized via weakly physisorbed citrate ions, Cit-GNPs) and mercaptoacetic acid-capped GNPs (stabilized via strongly chemisorbed mercaptoacetic acid, MAA-GNPs) are investigated. Both types of GNPs have similar core size and effective surface charge as evident from transmission electron microscopy and zeta potential measurements, respectively. Plasmon absorption of GNPs and its dependence on nanoparticle aggregation was employed to follow stability of GNPs in combination with dynamic light scattering analysis. Plasmon peak broadening index (PPBI) is proposed herein for the first time to quantify GNPs aggregation using nonlinear Gaussian fitting of GNPs UV-vis spectra. Our results indicate that Cit-GNPs aggregate irreversibly upon freeze-thaw cycles and lyophilization. In contrast, MAA-GNPs exhibits remarkable stability under the same conditions. Cit-GNPs exhibit no significant aggregation in the presence of cryoprotectants (molecules that are typically used to protect labile ingredients during lyophilization) upon freeze-thaw cycles and lyophilization. The effectiveness of the cyroprotectants evaluated was on the order of trehalose or sucrose > sorbitol > mannitol. The ability of cryoprotectants to prevent GNPs aggregation was dependent on their chemical structure and their ability to interact with the GNPs as assessed with zeta potential analysis 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Colloids  |2 NLM 
650 7 |a Cryoprotective Agents  |2 NLM 
650 7 |a Thioglycolates  |2 NLM 
650 7 |a Citric Acid  |2 NLM 
650 7 |a 2968PHW8QP  |2 NLM 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
650 7 |a 2-mercaptoacetate  |2 NLM 
650 7 |a 7857H94KHM  |2 NLM 
700 1 |a Abulateefeh, Samer R  |e verfasserin  |4 aut 
700 1 |a Mills, Kayla K  |e verfasserin  |4 aut 
700 1 |a Yaseen, Alaa I Bani  |e verfasserin  |4 aut 
700 1 |a Hamaly, Majd A  |e verfasserin  |4 aut 
700 1 |a Alkhatib, Hatim S  |e verfasserin  |4 aut 
700 1 |a Aiedeh, Khaled M  |e verfasserin  |4 aut 
700 1 |a Stone, John W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 30(2014), 46 vom: 25. Nov., Seite 13799-808  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:30  |g year:2014  |g number:46  |g day:25  |g month:11  |g pages:13799-808 
856 4 0 |u http://dx.doi.org/10.1021/la504000v  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 30  |j 2014  |e 46  |b 25  |c 11  |h 13799-808