No-reference sharpness assessment of camera-shaken images by analysis of spectral structure

The tremendous explosion of image-, video-, and audio-enabled mobile devices, such as tablets and smart-phones in recent years, has led to an associated dramatic increase in the volume of captured and distributed multimedia content. In particular, the number of digital photographs being captured ann...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 26. Dez., Seite 5428-39
1. Verfasser: Oh, Taegeun (VerfasserIn)
Weitere Verfasser: Park, Jincheol, Seshadrinathan, Kalpana, Lee, Sanghoon, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM243112653
003 DE-627
005 20231224131834.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0810.xml 
035 |a (DE-627)NLM243112653 
035 |a (NLM)25350928 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oh, Taegeun  |e verfasserin  |4 aut 
245 1 0 |a No-reference sharpness assessment of camera-shaken images by analysis of spectral structure 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 30.01.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The tremendous explosion of image-, video-, and audio-enabled mobile devices, such as tablets and smart-phones in recent years, has led to an associated dramatic increase in the volume of captured and distributed multimedia content. In particular, the number of digital photographs being captured annually is approaching 100 billion in just the U.S. These pictures are increasingly being acquired by inexperienced, casual users under highly diverse conditions leading to a plethora of distortions, including blur induced by camera shake. In order to be able to automatically detect, correct, or cull images impaired by shake-induced blur, it is necessary to develop distortion models specific to and suitable for assessing the sharpness of camera-shaken images. Toward this goal, we have developed a no-reference framework for automatically predicting the perceptual quality of camera-shaken images based on their spectral statistics. Two kinds of features are defined that capture blur induced by camera shake. One is a directional feature, which measures the variation of the image spectrum across orientations. The second feature captures the shape, area, and orientation of the spectral contours of camera shaken images. We demonstrate the performance of an algorithm derived from these features on new and existing databases of images distorted by camera shake 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Park, Jincheol  |e verfasserin  |4 aut 
700 1 |a Seshadrinathan, Kalpana  |e verfasserin  |4 aut 
700 1 |a Lee, Sanghoon  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 26. Dez., Seite 5428-39  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:26  |g month:12  |g pages:5428-39 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 26  |c 12  |h 5428-39