|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM243112645 |
003 |
DE-627 |
005 |
20231224131834.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0810.xml
|
035 |
|
|
|a (DE-627)NLM243112645
|
035 |
|
|
|a (NLM)25350927
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cai, Zhaowei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Robust deformable and occluded object tracking with dynamic graph
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.03.2015
|
500 |
|
|
|a Date Revised 30.01.2015
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a While some efforts have been paid to handle deformation and occlusion in visual tracking, they are still great challenges. In this paper, a dynamic graph-based tracker (DGT) is proposed to address these two challenges in a unified framework. In the dynamic target graph, nodes are the target local parts encoding appearance information, and edges are the interactions between nodes encoding inner geometric structure information. This graph representation provides much more information for tracking in the presence of deformation and occlusion. The target tracking is then formulated as tracking this dynamic undirected graph, which is also a matching problem between the target graph and the candidate graph. The local parts within the candidate graph are separated from the background with Markov random field, and spectral clustering is used to solve the graph matching. The final target state is determined through a weighted voting procedure according to the reliability of part correspondence, and refined with recourse to a foreground/background segmentation. An effective online updating mechanism is proposed to update the model, allowing DGT to robustly adapt to variations of target structure. Experimental results show improved performance over several state-of-the-art trackers, in various challenging scenarios
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a Wen, Longyin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vasconcelos, Nuno
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Stan Z
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 23(2014), 12 vom: 26. Dez., Seite 5497-509
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2014
|g number:12
|g day:26
|g month:12
|g pages:5497-509
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2014
|e 12
|b 26
|c 12
|h 5497-509
|