Fast ordering algorithm for exact histogram specification

This paper provides a fast algorithm to order in a meaningful, strict way the integer gray values in digital (quantized) images. It can be used in any exact histogram specification-based application. Our algorithm relies on the ordering procedure based on the specialized variational approach. This v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 16. Dez., Seite 5274-83
1. Verfasser: Nikolova, Mila (VerfasserIn)
Weitere Verfasser: Steidl, Gabriele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM243083807
003 DE-627
005 20231224131757.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0810.xml 
035 |a (DE-627)NLM243083807 
035 |a (NLM)25347881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nikolova, Mila  |e verfasserin  |4 aut 
245 1 0 |a Fast ordering algorithm for exact histogram specification 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 30.01.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper provides a fast algorithm to order in a meaningful, strict way the integer gray values in digital (quantized) images. It can be used in any exact histogram specification-based application. Our algorithm relies on the ordering procedure based on the specialized variational approach. This variational method was shown to be superior to all other state-of-the art ordering algorithms in terms of faithful total strict ordering but not in speed. Indeed, the relevant functionals are in general difficult to minimize because their gradient is nearly flat over vast regions. In this paper, we propose a simple and fast fixed point algorithm to minimize these functionals. The fast convergence of our algorithm results from known analytical properties of the model. Our algorithm is equivalent to an iterative nonlinear filtering. Furthermore, we show that a particular form of the variational model gives rise to much faster convergence than other alternative forms. We demonstrate that only a few iterations of this filter yield almost the same pixel ordering as the minimizer. Thus, we apply only few iteration steps to obtain images, whose pixels can be ordered in a strict and faithful way. Numerical experiments confirm that our algorithm outperforms by far its main competitors 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Steidl, Gabriele  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 16. Dez., Seite 5274-83  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:16  |g month:12  |g pages:5274-83 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 16  |c 12  |h 5274-83