Sparsity fine tuning in wavelet domain with application to compressive image reconstruction

In compressive sensing, wavelet space is widely used to generate sparse signal (image signal in particular) representations. In this paper, we propose a novel approach of statistical context modeling to increase the level of sparsity of wavelet image representations. It is shown, contrary to a widel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 11. Dez., Seite 5249-62
1. Verfasser: Dong, Weisheng (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin, Shi, Guangming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM242927319
003 DE-627
005 20231224131433.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0809.xml 
035 |a (DE-627)NLM242927319 
035 |a (NLM)25330492 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Weisheng  |e verfasserin  |4 aut 
245 1 0 |a Sparsity fine tuning in wavelet domain with application to compressive image reconstruction 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 30.01.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In compressive sensing, wavelet space is widely used to generate sparse signal (image signal in particular) representations. In this paper, we propose a novel approach of statistical context modeling to increase the level of sparsity of wavelet image representations. It is shown, contrary to a widely held assumption, that high-frequency wavelet coefficients have nonzero mean distributions if conditioned on local image structures. Removing this bias can make wavelet image representations sparser, i.e., having a greater number of zero and closeto-zero coefficients. The resulting unbiased probability models can significantly improve the performance of existing wavelet-based compressive image reconstruction methods in both PSNR and visual quality. An efficient algorithm is presented to solve the compressive image recovery (CIR) problem using the refined models. Experimental results on both simulated compressive sensing (CS) image data and real CS image data show that the new CIR method significantly outperforms existing CIR methods in both PSNR and visual quality 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 11. Dez., Seite 5249-62  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:11  |g month:12  |g pages:5249-62 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 11  |c 12  |h 5249-62