Cross-camera knowledge transfer for multiview people counting

We present a novel two-pass framework for counting the number of people in an environment, where multiple cameras provide different views of the subjects. By exploiting the complementary information captured by the cameras, we can transfer knowledge between the cameras to address the difficulties of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 1 vom: 11. Jan., Seite 80-93
1. Verfasser: Tang, Nick C (VerfasserIn)
Weitere Verfasser: Lin, Yen-Yu, Weng, Ming-Fang, Liao, Hong-Yuan Mark
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM242927289
003 DE-627
005 20250217154421.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2363445  |2 doi 
028 5 2 |a pubmed25n0809.xml 
035 |a (DE-627)NLM242927289 
035 |a (NLM)25330489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Nick C  |e verfasserin  |4 aut 
245 1 0 |a Cross-camera knowledge transfer for multiview people counting 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.11.2015 
500 |a Date Revised 20.02.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present a novel two-pass framework for counting the number of people in an environment, where multiple cameras provide different views of the subjects. By exploiting the complementary information captured by the cameras, we can transfer knowledge between the cameras to address the difficulties of people counting and improve the performance. The contribution of this paper is threefold. First, normalizing the perspective of visual features and estimating the size of a crowd are highly correlated tasks. Hence, we treat them as a joint learning problem. The derived counting model is scalable and it provides more accurate results than existing approaches. Second, we introduce an algorithm that matches groups of pedestrians in images captured by different cameras. The results provide a common domain for knowledge transfer, so we can work with multiple cameras without worrying about their differences. Third, the proposed counting system is comprised of a pair of collaborative regressors. The first one determines the people count based on features extracted from intracamera visual information, whereas the second calculates the residual by considering the conflicts between intercamera predictions. The two regressors are elegantly coupled and provide an accurate people counting system. The results of experiments in various settings show that, overall, our approach outperforms comparable baseline methods. The significant performance improvement demonstrates the effectiveness of our two-pass regression framework 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lin, Yen-Yu  |e verfasserin  |4 aut 
700 1 |a Weng, Ming-Fang  |e verfasserin  |4 aut 
700 1 |a Liao, Hong-Yuan Mark  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 1 vom: 11. Jan., Seite 80-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:1  |g day:11  |g month:01  |g pages:80-93 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2363445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 1  |b 11  |c 01  |h 80-93