Bilayer sparse topic model for scene analysis in imbalanced surveillance videos

Dynamic scene analysis has become a popular research area especially in video surveillance. The goal of this paper is to mine semantic motion patterns and detect abnormalities deviating from normal ones occurring in complex dynamic scenarios. To address this problem, we propose a data-driven and sce...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 11. Dez., Seite 5198-208
1. Verfasser: Wang, Jinqiao (VerfasserIn)
Weitere Verfasser: Fu, Wei, Lu, Hanqing, Ma, Songde
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM242927254
003 DE-627
005 20231224131433.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2363408  |2 doi 
028 5 2 |a pubmed24n0809.xml 
035 |a (DE-627)NLM242927254 
035 |a (NLM)25330486 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jinqiao  |e verfasserin  |4 aut 
245 1 0 |a Bilayer sparse topic model for scene analysis in imbalanced surveillance videos 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 29.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamic scene analysis has become a popular research area especially in video surveillance. The goal of this paper is to mine semantic motion patterns and detect abnormalities deviating from normal ones occurring in complex dynamic scenarios. To address this problem, we propose a data-driven and scene-independent approach, namely, Bilayer sparse topic model (BiSTM), where a given surveillance video is represented by a word-document hierarchical generative process. In this BiSTM, motion patterns are treated as latent topics sparsely distributed over low-level motion vectors, whereas a video clip can be sparsely reconstructed by a mixture of topics (motion pattern). In addition to capture the characteristic of extreme imbalance between numerous typical normal activities and few rare abnormalities in surveillance video data, a one-class constraint is directly imposed on the distribution of documents as a discriminant priori. By jointly learning topics and one-class document representation within a discriminative framework, the topic (pattern) space is more specific and explicit. An effective alternative iteration algorithm is presented for the model learning. Experimental results and comparisons on various public data sets demonstrate the promise of the proposed approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fu, Wei  |e verfasserin  |4 aut 
700 1 |a Lu, Hanqing  |e verfasserin  |4 aut 
700 1 |a Ma, Songde  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 11. Dez., Seite 5198-208  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:11  |g month:12  |g pages:5198-208 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2363408  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 11  |c 12  |h 5198-208