Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives

Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs' physiochemical and tribological properties. Here...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 44 vom: 11. Nov., Seite 13301-11
1. Verfasser: Zhou, Yan (VerfasserIn)
Weitere Verfasser: Dyck, Jeffrey, Graham, Todd W, Luo, Huimin, Leonard, Donovan N, Qu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs' physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are organophosphate > carboxylate > sulfonate. All selected ILs outperformed a commercial ashless antiwear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the IL's oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribo-film, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an antiwear tribo-film
Beschreibung:Date Completed 21.05.2015
Date Revised 11.11.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la5032366