Improving cross-resolution face matching using ensemble-based co-transfer learning

Face recognition algorithms are generally trained for matching high-resolution images and they perform well for similar resolution test data. However, the performance of such systems degrades when a low-resolution face image captured in unconstrained settings, such as videos from cameras in a survei...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 12. Dez., Seite 5654-69
1. Verfasser: Bhatt, Himanshu S (VerfasserIn)
Weitere Verfasser: Singh, Richa, Vatsa, Mayank, Ratha, Nalini K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM242776957
003 DE-627
005 20250217151252.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0809.xml 
035 |a (DE-627)NLM242776957 
035 |a (NLM)25314702 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bhatt, Himanshu S  |e verfasserin  |4 aut 
245 1 0 |a Improving cross-resolution face matching using ensemble-based co-transfer learning 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.10.2015 
500 |a Date Revised 02.02.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Face recognition algorithms are generally trained for matching high-resolution images and they perform well for similar resolution test data. However, the performance of such systems degrades when a low-resolution face image captured in unconstrained settings, such as videos from cameras in a surveillance scenario, are matched with high-resolution gallery images. The primary challenge, here, is to extract discriminating features from limited biometric content in low-resolution images and match it to information rich high-resolution face images. The problem of cross-resolution face matching is further alleviated when there is limited labeled positive data for training face recognition algorithms. In this paper, the problem of cross-resolution face matching is addressed where low-resolution images are matched with high-resolution gallery. A co-transfer learning framework is proposed, which is a cross-pollination of transfer learning and co-training paradigms and is applied for cross-resolution face matching. The transfer learning component transfers the knowledge that is learnt while matching high-resolution face images during training to match low-resolution probe images with high-resolution gallery during testing. On the other hand, co-training component facilitates this transfer of knowledge by assigning pseudolabels to unlabeled probe instances in the target domain. Amalgamation of these two paradigms in the proposed ensemble framework enhances the performance of cross-resolution face recognition. Experiments on multiple face databases show the efficacy of the proposed algorithm and compare with some existing algorithms and a commercial system. In addition, several high profile real-world cases have been used to demonstrate the usefulness of the proposed approach in addressing the tough challenges 
650 4 |a Journal Article 
700 1 |a Singh, Richa  |e verfasserin  |4 aut 
700 1 |a Vatsa, Mayank  |e verfasserin  |4 aut 
700 1 |a Ratha, Nalini K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 12. Dez., Seite 5654-69  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:12  |g month:12  |g pages:5654-69 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 12  |c 12  |h 5654-69