A general framework for regularized, similarity-based image restoration

Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of th...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 05. Dez., Seite 5136-51
Auteur principal: Kheradmand, Amin (Auteur)
Autres auteurs: Milanfar, Peyman
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM242759734
003 DE-627
005 20250217150910.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2362059  |2 doi 
028 5 2 |a pubmed25n0809.xml 
035 |a (DE-627)NLM242759734 
035 |a (NLM)25312932 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kheradmand, Amin  |e verfasserin  |4 aut 
245 1 2 |a A general framework for regularized, similarity-based image restoration 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.10.2015 
500 |a Date Revised 28.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Milanfar, Peyman  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 05. Dez., Seite 5136-51  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:05  |g month:12  |g pages:5136-51 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2362059  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 05  |c 12  |h 5136-51