Iterative support detection-based split Bregman method for wavelet frame-based image inpainting

The wavelet frame systems have been extensively studied due to their capability of sparsely approximating piece-wise smooth functions, such as images, and the corresponding wavelet frame-based image restoration models are mostly based on the penalization of the l1 norm of wavelet frame coefficients...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 05. Dez., Seite 5470-85
1. Verfasser: He, Liangtian (VerfasserIn)
Weitere Verfasser: Wang, Yilun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM242759653
003 DE-627
005 20250217150909.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed25n0809.xml 
035 |a (DE-627)NLM242759653 
035 |a (NLM)25312924 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Liangtian  |e verfasserin  |4 aut 
245 1 0 |a Iterative support detection-based split Bregman method for wavelet frame-based image inpainting 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 30.01.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The wavelet frame systems have been extensively studied due to their capability of sparsely approximating piece-wise smooth functions, such as images, and the corresponding wavelet frame-based image restoration models are mostly based on the penalization of the l1 norm of wavelet frame coefficients for sparsity enforcement. In this paper, we focus on the image inpainting problem based on the wavelet frame, propose a weighted sparse restoration model, and develop a corresponding efficient algorithm. The new algorithm combines the idea of iterative support detection method, first proposed by Wang and Yin for sparse signal reconstruction, and the split Bregman method for wavelet frame l1 model of image inpainting, and more important, naturally makes use of the specific multilevel structure of the wavelet frame coefficients to enhance the recovery quality. This new algorithm can be considered as the incorporation of prior structural information of the wavelet frame coefficients into the traditional l1 model. Our numerical experiments show that the proposed method is superior to the original split Bregman method for wavelet frame-based l1 norm image inpainting model as well as some typical l(p) (0 ≤ p < 1) norm-based nonconvex algorithms such as mean doubly augmented Lagrangian method, in terms of better preservation of sharp edges, due to their failing to make use of the structure of the wavelet frame coefficients 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Yilun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 05. Dez., Seite 5470-85  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:05  |g month:12  |g pages:5470-85 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 05  |c 12  |h 5470-85