High Performance Data Clustering : A Comparative Analysis of Performance for GPU, RASC, MPI, and OpenMP Implementations

Compared to Beowulf clusters and shared-memory machines, GPU and FPGA are emerging alternative architectures that provide massive parallelism and great computational capabilities. These architectures can be utilized to run compute-intensive algorithms to analyze ever-enlarging datasets and provide s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing. - 1998. - 70(2014), 1 vom: 01. Okt., Seite 284-300
1. Verfasser: Yang, Luobin (VerfasserIn)
Weitere Verfasser: Chiu, Steve C, Liao, Wei-Keng, Thomas, Michael A
Format: Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The Journal of supercomputing
Schlagworte:Journal Article HPC K-means Clustering Parallel Data Clustering Reconfigurable Computing Scalability
LEADER 01000caa a22002652c 4500
001 NLM242721540
003 DE-627
005 20250217150049.0
007 tu
008 231224s2014 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0809.xml 
035 |a (DE-627)NLM242721540 
035 |a (NLM)25309040 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Luobin  |e verfasserin  |4 aut 
245 1 0 |a High Performance Data Clustering  |b A Comparative Analysis of Performance for GPU, RASC, MPI, and OpenMP Implementations 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Compared to Beowulf clusters and shared-memory machines, GPU and FPGA are emerging alternative architectures that provide massive parallelism and great computational capabilities. These architectures can be utilized to run compute-intensive algorithms to analyze ever-enlarging datasets and provide scalability. In this paper, we present four implementations of K-means data clustering algorithm for different high performance computing platforms. These four implementations include a CUDA implementation for GPUs, a Mitrion C implementation for FPGAs, an MPI implementation for Beowulf compute clusters, and an OpenMP implementation for shared-memory machines. The comparative analyses of the cost of each platform, difficulty level of programming for each platform, and the performance of each implementation are presented 
650 4 |a Journal Article 
650 4 |a HPC 
650 4 |a K-means Clustering 
650 4 |a Parallel Data Clustering 
650 4 |a Reconfigurable Computing 
650 4 |a Scalability 
700 1 |a Chiu, Steve C  |e verfasserin  |4 aut 
700 1 |a Liao, Wei-Keng  |e verfasserin  |4 aut 
700 1 |a Thomas, Michael A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 70(2014), 1 vom: 01. Okt., Seite 284-300  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:70  |g year:2014  |g number:1  |g day:01  |g month:10  |g pages:284-300 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 70  |j 2014  |e 1  |b 01  |c 10  |h 284-300