A fast adaptive parameter estimation for total variation image restoration

Estimation of the regularization parameter, which strikes a balance between the data fidelity and regularity, is essential for successfully solving ill-posed image restoration problems. Based on the classical total variation (TV) model and prevalent alternating direction method of multipliers, we ha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 04. Dez., Seite 4954-67
1. Verfasser: He, Chuan (VerfasserIn)
Weitere Verfasser: Hu, Changhua, Zhang, Wei, Shi, Biao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM24231550X
003 DE-627
005 20231224130134.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2360133  |2 doi 
028 5 2 |a pubmed24n0807.xml 
035 |a (DE-627)NLM24231550X 
035 |a (NLM)25265611 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Chuan  |e verfasserin  |4 aut 
245 1 2 |a A fast adaptive parameter estimation for total variation image restoration 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.10.2015 
500 |a Date Revised 21.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Estimation of the regularization parameter, which strikes a balance between the data fidelity and regularity, is essential for successfully solving ill-posed image restoration problems. Based on the classical total variation (TV) model and prevalent alternating direction method of multipliers, we hammer out a fast algorithm being able to simultaneously estimate the regularization parameter and restore the degraded image. By applying variable splitting technique to both the regularization term and data fidelity term, we overcome the nondifferentiability of TV and achieve a closed form to update the regularization parameter in each iteration. The solution is guaranteed to satisfy Morozov's discrepancy principle. Furthermore, we present a convergence proof for the proposed algorithm on the premise of a variable regularization parameter. Experimental results demonstrate that the proposed algorithm is superior in speed and competitive in accuracy compared with several state-of-the-art methods. Besides, the proposed method can be smoothly extended to the multichannel image restoration 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Changhua  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Shi, Biao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 04. Dez., Seite 4954-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:04  |g month:12  |g pages:4954-67 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2360133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 04  |c 12  |h 4954-67