|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM242285910 |
003 |
DE-627 |
005 |
20231224130056.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la502821m
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0807.xml
|
035 |
|
|
|a (DE-627)NLM242285910
|
035 |
|
|
|a (NLM)25262570
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Peng, Shuhua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a From nanodroplets by the ouzo effect to interfacial nanolenses
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.05.2015
|
500 |
|
|
|a Date Revised 21.10.2014
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Polymerizing nanodroplets at solid-liquid interfaces is a facile solution-based approach to the functionalization of large surface areas with polymeric lens-shaped nanostructures. In this work, we have applied a one-pot approach to obtain polymeric nanolenses with controlled sizes and densities. We take advantage of the formation mechanism by the direct adsorption of nanodroplets from a surfactant-free microemulsion onto an immersed hydrophobic substrate. The interfacial nanodroplets were photopolymerized to produce polymeric nanolenses on the substrate surface. The surfactant-free microemulsion of the monomer nanodroplets was obtained through the spontaneous emulsification (i.e., ouzo effect) in the tertiary system of ethanol, water, and precusor monomer. The size of nanolenses on the surface was adjusted by the nanodroplet size, following a linear relationship with the ratio of the components in the microemulsion. This simple approach is applicable to produce nanolenses over the entire surface area or on any specific area at will by depositing a drop of the microemulsion. Possessing high optical transparency, the resulting substrates may have potential application as functional biomedical supporting materials or effective light-harvesting coatings
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xu, Chenglong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hughes, Timothy C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xuehua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 30(2014), 41 vom: 21. Okt., Seite 12270-7
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2014
|g number:41
|g day:21
|g month:10
|g pages:12270-7
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la502821m
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2014
|e 41
|b 21
|c 10
|h 12270-7
|