Plasmodesmata in integrated cell signalling : insights from development and environmental signals and stresses

© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 65(2014), 22 vom: 27. Dez., Seite 6337-58
1. Verfasser: Sager, Ross (VerfasserIn)
Weitere Verfasser: Lee, Jung-Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review Plasmodesmata biotic and abiotic stress callose. cell signalling cell-to-cell communication development mehr... environmental stresses hormones
Beschreibung
Zusammenfassung:© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways
Beschreibung:Date Completed 21.07.2015
Date Revised 21.10.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eru365