In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers
© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1990. - 205(2015), 2 vom: 06. Jan., Seite 653-65 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Brunfelsia calycina anthocyanin degradation flower pigmentation vacuolar localization vacuolar peroxidase Anthocyanins Plant Proteins Peroxidase EC 1.11.1.7 |
Zusammenfassung: | © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust. In contrast to detailed knowledge regarding the biosynthesis of anthocyanins, the largest group of plant pigments, little is known about their in planta degradation. It has been suggested that anthocyanin degradation is enzymatically controlled and induced when beneficial to the plant. Here we investigated the enzymatic process in Brunfelsia calycina flowers, as they changed color from purple to white. We characterized the enzymatic process by which B. calycina protein extracts degrade anthocyanins. A candidate peroxidase was partially purified and characterized and its intracellular localization was determined. The transcript sequence of this peroxidase was fully identified. A basic peroxidase, BcPrx01, is responsible for the in planta degradation of anthocyanins in B. calycina flowers. BcPrx01 has the ability to degrade complex anthocyanins, it co-localizes with these pigments in the vacuoles of petals, and both the mRNA and protein levels of BcPrx01 are greatly induced parallel to the degradation of anthocyanins. Both isoelectric focusing (IEF) gel analysis and 3D structure prediction indicated that BcPrx01 is cationic. Identification of BcPrx01 is a significant breakthrough both in the understanding of anthocyanin catabolism in plants and in the field of peroxidases, where such a consistent relationship between expression levels, in planta subcellular localization and activity has seldom been demonstrated |
---|---|
Beschreibung: | Date Completed 31.08.2015 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.13038 |